WhitepaperPage-Reishi

Reishi Tincture Whitepaper
Researched & Written By: Dr. Jeremy, PharmD

Functional mushrooms, also known as medicinal mushrooms, are species of fungi that offer potential health benefits beyond their nutritional value. These mushrooms, including varieties like reishi, chaga, and lion's mane, have a rich history of use in traditional medicine systems across various cultures. They contain diverse bioactive compounds such as

beta-glucans, triterpenes, and antioxidants, which contribute to their purported health benefits. In modern diets, functional mushrooms are available in various forms, from powders and supplements to teas and protein powders. Despite their growing popularity, the scientific evidence supporting their benefits is still emerging, with ongoing research needed to fully understand their effects and optimal dosages.

Insert Section

Historical Use in Traditional Medicine

Medicinal mushrooms have a rich history of use in traditional medicine systems across various cultures, dating back thousands of years. In ancient China, mushrooms were highly valued for their healing properties and played a significant role in Traditional Chinese Medicine (TCM). The use of medicinal mushrooms in China can be traced back to the Han Dynasty (202 BC – 220 AD), with early written records documenting their therapeutic applications.

One of the most revered medicinal mushrooms in ancient China was the Reishi mushroom, also known as the "mushroom of immortality". It was so highly prized that it was reserved exclusively for the ruling classes and imperial family, earning the title "Herb of Spiritual Potency". Reishi was used in imperial ceremonies and offered as part of ritual libations to the gods.

In other parts of Asia, such as Japan and Korea, medicinal mushrooms were also incorporated into traditional healing practices. The use of these fungi spread beyond Asia, with evidence of their application in ancient Egyptian, Greek, and Roman cultures. Ancient Egyptians believed mushrooms were "plants of immortality" and considered them a gift from the god Osiris.

Chaga mushrooms have a long history of use in Siberia and Scandinavia, dating back to at least the 12th century. Indigenous populations in these regions used chaga in teas, tinctures,and poultices to treat various ailments, including headaches and stomach problems. The Vikings were said to have consumed mushrooms before battle to enhance their fighting abilities. In North and Mesoamerica, indigenous cultures also incorporated medicinal mushrooms into their healing traditions. The use of mushrooms for medicinal purposes in these regions has been documented since at least the 16th century.

Throughout history, medicinal mushrooms were used to treat a wide range of conditions. In TCM, they were employed to boost the immune system, fight infections, and improve overall health and longevity. Ancient Greek physicians classified certain mushrooms for their anti-inflammatory properties and ability to help cauterize wounds.

The historical use of medicinal mushrooms laid the foundation for modern research and applications. Today, scientists continue to study the bioactive compounds in these fungi, validating many of the traditional uses and uncovering new potential benefits. This long-standing history of use in traditional medicine systems around the world underscores the enduring significance of medicinal mushrooms in human health and wellness practices.

Bioactive Compounds in Functional Mushrooms

Functional mushrooms contain a diverse array of bioactive compounds that contribute to their potential health benefits. These compounds include:

    1. Beta-glucans: These complex polysaccharides are among the most well-known bioactive compounds in functional mushrooms. Beta-glucans are known for their

      immune-enhancing properties, stimulating immune cells like macrophages and natural killer cells to promote a robust immune response. They also possess antioxidant properties that help combat oxidative stress.

    2. Polysaccharides: Beyond beta-glucans, functional mushrooms contain various other polysaccharides with immunomodulatory effects. These compounds interact with the immune system to regulate its response, supporting overall immune health.

    3. Triterpenes: Found in specific functional mushrooms like Reishi and Chaga, triterpenes are associated with anti-inflammatory, antioxidant, and adaptogenic effects. Research has shown their potential in reducing inflammation and supporting stress resilience.

    4. Hericenones and erinacines: These compounds are unique to Lion's Mane mushroom. They have been studied for their potential to stimulate the production of nerve growth factor (NGF), which is crucial for nerve cell growth and cognitive function.

    5. Antioxidants: Many functional mushrooms are rich in antioxidants such as ergothioneine and selenium. These compounds neutralize harmful free radicals in the body, protecting cells from oxidative damage and contributing to overall health and well-being.

    6. Ergosterol: This compound is a precursor to vitamin D. When functional mushrooms are exposed to UV light, they can convert ergosterol into vitamin D2, which is important for bone health and immune function.



The bioactive compounds in functional mushrooms are responsible for their potential health benefits, including:


  • Boosting immunity: Beta-glucans and polysaccharides stimulate immune cells, enhancing the body's defense against infections.

  • Supporting brain health: Compounds in Lion's Mane mushroom may promote nerve growth factor production, potentially aiding cognitive function.

  • Reducing inflammation: Triterpenes and other anti-inflammatory compounds in certain mushrooms have the potential to modulate inflammation pathways.

  • Enhancing stress resilience: Adaptogenic compounds help the body adapt to stress, supporting overall resilience and well-being.

  • Protecting cells: Antioxidants in functional mushrooms help neutralize free radicals, protecting cells from oxidative stress and damage.

It's important to note that while research into these bioactive compounds is promising, many studies have been conducted in vitro or on animals. More human clinical trials are needed to fully understand the effects and optimal dosages of these compounds. Additionally, the concentration and effectiveness of these bioactive compounds can vary depending on the mushroom species, growing conditions, and processing methods.

Mushroom Bioactives: Mechanisms

Medicinal mushrooms contain a diverse array of bioactive compounds that exhibit various pharmacological activities in preclinical studies. The major bioactive compounds include polysaccharides, proteins, terpenes, and phenolic compounds.

Polysaccharides, particularly α- and β-glucans, are among the most important bioactive components in medicinal mushrooms. These compounds demonstrate strong immunomodulatory effects by binding to specific cell wall receptors and stimulating immune responses. β-glucans have been shown to activate macrophages, natural killer cells, and other components of the innate immune system. The immunomodulatory activity of polysaccharides is influenced by their structural features, including degree of branching, backbone linkage, and side-chain units.

Terpenes and terpenoids found in medicinal mushrooms, especially in species like Ganoderma, exhibit anti-inflammatory, antioxidant, and antitumor properties. These compounds modulate the immune system by stimulating the expression of genes involved in immune responses. For example, triterpenes from Ganoderma lucidum have demonstrated anti-inflammatory and antitumor effects in preclinical studies.

Proteins and peptides from medicinal mushrooms also contribute to their bioactivity. Some fungal proteins have shown antitumor and immunomodulatory effects in vitro and in animal studies. For instance, proteins from Cordyceps militaris have exhibited antitumor activity against various cancer cell lines.

Phenolic compounds present in medicinal mushrooms act as potent antioxidants, helping to neutralize free radicals and reduce oxidative stress. These compounds have shown potential in preventing chronic diseases associated with oxidative damage.

In vitro studies have demonstrated the direct effects of mushroom extracts and isolated compounds on various cell types. For example, polysaccharides from Ganoderma lucidum have been shown to stimulate the production of cytokines and enhance the activity of immune cells in cell culture experiments. Similarly, triterpenes from Ganoderma species have exhibited cytotoxic effects against cancer cells in vitro.

In vivo preclinical studies using animal models have provided further insights into the mechanisms of action and potential therapeutic applications of medicinal mushrooms. For instance, studies in mice have shown that polysaccharides from various mushroom species can enhance immune function, reduce tumor growth, and improve overall health outcomes. Animal studies have also demonstrated the potential of mushroom extracts in managing conditions such as diabetes, cardiovascular diseases, and neurodegenerative disorders.

It's important to note that while these preclinical studies show promising results, more research, particularly human clinical trials, is needed to fully understand the efficacy and safety of medicinal mushrooms and their bioactive compounds. The translation of in vitro and animal study results to human applications requires careful consideration of factors such as bioavailability, metabolism, and potential interactions with other substances.

Functional Mushrooms in Modern Diets

Functional mushrooms have gained significant popularity in modern diets, with a growing market for mushroom-based supplements and products. The global functional mushroom industry is expected to reach nearly $45 billion by 2028, indicating a surge in consumer interest and demand.

These mushrooms are now available in various forms to suit different preferences and lifestyles:

  1. Powders: Many functional mushrooms are sold as powders that can be easily added to beverages, smoothies, or foods. For example, companies like Four Sigmatic offer ground coffee blends containing lion's mane and chaga mushroom extracts.

  2. Supplements: Capsules and tablets containing concentrated mushroom extracts are widely available. Wild Foods Co, for instance, offers a Reishi Mushroom Extract in capsule form.

  3. Teas and beverages: Mushroom-infused teas and coffee alternatives have become popular. Beyond Brew by Live Conscious is a caffeine-free blend containing six different mushrooms, including reishi and lion's mane.

  4. Protein powders: Some companies have incorporated functional mushrooms into protein supplements. Mushroom Design offers a vegan protein powder that includes extracts from chaga, cordyceps, lion's mane, oyster, and shiitake mushrooms.

  5. Edible forms: While many functional mushrooms are not typically consumed for their taste, some, like lion's mane, can be cooked and eaten. Lion's mane has a tender texture and a mild sweet flavor.

The integration of functional mushrooms into modern diets is driven by growing interest in their potential health benefits:

  • Immune support: Many consumers turn to mushrooms like reishi and chaga for their immune-boosting properties.

  • Cognitive enhancement: Lion's mane, in particular, is sought after for its potential to support brain health and cognitive function.

  • Stress management: Adaptogenic mushrooms like cordyceps are used to help the body adapt to stress.

  • Energy and endurance: Some mushrooms, such as cordyceps, are believed to boost energy and athletic performance.

However, it's important to note that while functional mushrooms show promise, the scientific evidence supporting their benefits is still limited. Dr. Richard Friedman, a professor of clinical psychiatry at Weill Cornell Medical College, cautions that "There's a lot of speculation and assertion but not a lot of science". Many studies have been conducted in vitro or on animals, and more human clinical trials are needed to fully understand the effects and optimal dosages of these mushrooms.

Consumers should also be aware that the FDA does not pre-approve food products or supplements containing functional mushrooms before they hit the market. This means that the contents of these products may not always match what's stated on the label.

When incorporating functional mushrooms into modern diets, it's crucial to have realistic expectations and consult with healthcare providers, especially when using them as supplements. While they may offer potential health benefits, functional mushrooms should not replace professional medical advice or treatment.

Mushroom Supplement Overview

Mushrooms have gained significant attention in the realm of dietary supplements and complementary medicine, particularly for their potential therapeutic benefits. However, the use of mushroom supplements presents several challenges and considerations:

  1. Limited human clinical evidence: While many mushrooms have demonstrated promising results in vitro and in animal studies, there is a lack of robust clinical evidence supporting their efficacy in humans. Many claims made by supplement companies are based on preclinical studies rather than human trials.

  2. Variability in products: The mushroom supplement market is characterized by a wide variety of products with differing doses, preparations, and manufacturing practices. This lack of standardization makes it difficult to compare products and establish consistent dosing guidelines.

  3. Quality control issues: The absence of standardization can lead to significant differences in the composition and potency of mushroom supplements, even between batches from the same manufacturer. This variability compromises the validity and repeatability of clinical trial results.

  4. Regulatory challenges: The regulatory status of mushroom supplements varies globally. In some countries, they may be classified as foodstuffs, while in others, they are considered medicinal products. This lack of consistent regulation can impact quality control and safety standards.

  5. Safety concerns: While generally considered safe when consumed as food, some mushroom supplements may cause side effects or interact with medications. Reported side effects include nausea, vomiting, diarrhea, dizziness, and allergic reactions.

  6. Lack of standardized dosing: Due to the variability in products and limited clinical research, there are no well-established dosing guidelines for most mushroom supplements.

  7. Potential for contamination: Without proper quality control measures, there is a risk of contamination with toxic mushrooms or other harmful substances.

  8. Limited inclusion in dietary guidelines: Despite their potential benefits, mushrooms are often omitted from dietary guidelines. Only recently has there been a recommendation to include mushrooms in dietary patterns, such as the USDA's suggestion to add 84g/day of mushroom mixtures to food patterns.

  9. Emerging research areas: Recent studies have begun to explore the potential of mushrooms in areas such as gut health and neurological function. However, more research is needed to fully understand these effects.

  10. Regulatory status: In the United States, the FDA does not approve mushroom supplements for use as cancer treatments or for other medical conditions. They are regulated as dietary supplements, which have less stringent oversight than pharmaceuticals.

Despite these challenges, mushroom supplements continue to gain popularity, particularly in complementary and integrative medicine approaches. They are commonly used in oncology settings, especially in Asian countries where mycotherapy has deep-rooted traditions.

To address these issues, there is a need for more standardized production methods, increased quality control measures, and most importantly, more rigorous clinical trials to establish the efficacy and safety of mushroom supplements for various health conditions. As research progresses, it may lead to more evidence-based recommendations for the therapeutic use of mushrooms in dietary supplements.

Clinical Trial Evidence

Clinical trials have provided valuable insights into the pharmacological activities of medicinal mushrooms, offering evidence for their potential therapeutic applications. Several key areas have been investigated:

Immunomodulation: Clinical studies have demonstrated the immunomodulatory effects of certain mushroom extracts. For example, polysaccharide K (PSK), derived from Trametes versicolor, has shown promise in enhancing immune function in cancer patients. A randomized controlled trial found that PSK supplementation improved immune parameters and quality of life in breast cancer patients undergoing chemotherapy.


Anticancer properties: Some mushroom-derived compounds have exhibited anticancer potential in clinical settings. A study on Ganoderma lucidum extract showed that it could enhance the efficacy of conventional chemotherapy in advanced lung cancer patients, improving their quality of life and immune function. Another trial found that Agaricus blazei Murill extract reduced chemotherapy-related side effects in gynecological cancer patients.


Antidiabetic effects: Clinical trials have explored the potential of certain mushrooms in managing diabetes. A study on Ganoderma lucidum polysaccharides demonstrated their ability to lower blood glucose levels and improve insulin sensitivity in type 2 diabetes patients.


Cardiovascular health: Some mushroom extracts have shown promise in improving cardiovascular health markers. A clinical trial found that Ganoderma lucidum extract could reduce blood pressure and improve lipid profiles in patients with hypertension.


Cognitive function : Lion's Mane mushroom (Hericium erinaceus) has been studied for its potential cognitive benefits. A small clinical trial reported improvements in cognitive function scores in older adults with mild cognitive impairment after consuming Lion's Mane extract for 16 weeks.


Antioxidant activity : Several mushroom species have demonstrated antioxidant properties in clinical settings. A study on Cordyceps militaris extract showed increased antioxidant capacity in healthy adults after supplementation.


While these clinical trials provide promising evidence for the pharmacological activities of medicinal mushrooms, it's important to note that many studies have limitations such as small sample sizes, short durations, or lack of standardization in mushroom preparations. More large-scale, long-term clinical trials are needed to fully establish the efficacy and safety of mushroom-derived compounds for various health conditions.

Additionally, the mechanisms of action for many mushroom bioactives are still being elucidated. Some proposed mechanisms include modulation of immune system components, regulation of apoptosis in cancer cells, and enhancement of antioxidant defenses. However, further research is required to fully understand these mechanisms and their implications for human health.

It's also crucial to consider that the efficacy of mushroom supplements can vary depending on factors such as the specific mushroom species, extraction methods, and dosage. Therefore, standardization of mushroom preparations and dosing protocols is essential for consistent and reliable clinical outcomes.

In conclusion, while clinical trials have provided valuable evidence for the pharmacological activities of medicinal mushrooms, more robust research is needed to solidify their place in modern medicine and to develop standardized, evidence-based therapeutic applications.

Cancer Clinical Trials

Clinical studies investigating the potential of medicinal mushrooms in cancer treatment have shown promising results, though more robust research is still needed. Several mushroom species and their extracts have been evaluated for their effects on cancer patients, primarily focusing on improving quality of life, reducing side effects of conventional treatments, and potentially enhancing treatment efficacy.

Ganoderma lucidum (Reishi) has been the subject of multiple clinical trials. A Cochrane review in 2016 analyzed five randomized controlled trials (RCTs) involving G. lucidum in cancer treatment. The review found that when G. lucidum was used alongside conventional treatments like chemotherapy and radiotherapy, there was a small benefit in terms of increased immune cell activity. However, the authors emphasized that the trials had limitations and that more high-quality studies are needed to draw definitive conclusions.

Lentinula edodes (Shiitake) extract, particularly its polysaccharide component lentinan, has been studied in cancer patients. In China, a literature review of 12 studies examined the use of lentinan in combination with chemotherapy for lung cancer. The findings suggested that lentinan had immunomodulatory effects and improved quality of life in lung cancer patients.

However, larger-scale studies are required to confirm these results.

Coriolus versicolor (Turkey Tail) and its polysaccharide extract PSK (Polysaccharide-K) have been extensively studied in Japan. A systematic review and meta-analysis of 13 clinical trials analyzing survival in cancer patients found that PSK as an adjuvant to standard cancer treatment was associated with improved survival rates, particularly in patients with gastric or colorectal cancer.

Active Hexose Correlated Compound (AHCC), derived from Lentinula edodes, has shown potential in several small-scale human trials. In one uncontrolled trial, 11 advanced cancer patients given 3 grams of AHCC daily for one month showed a 2.5-fold increase in natural killer cell activity, with over half experiencing a tumor response. Another study of 269 hepatocellular cancer patients who received curative resection found that those given 3 grams of AHCC daily had a significantly longer disease-free interval and increased overall survival compared to the control group.

Despite these encouraging results, it's important to note that many of these studies have limitations. Sample sizes are often small, and methodologies may not always meet the highest standards of clinical research. The U.S. Food and Drug Administration (FDA) has not approved the use of medicinal mushrooms as a treatment for cancer or any other medical condition.

Current knowledge does not support the routine use of medicinal mushrooms in cancer patients. However, the existing evidence suggests potential benefits, particularly in terms of improving quality of life and reducing side effects of conventional treatments. Patients considering the use of medicinal mushrooms as an adjunct to cancer treatment should consult with their healthcare providers to make informed decisions based on their individual circumstances.

In conclusion, while medicinal mushrooms show promise in cancer care, particularly as complementary therapies, more high-quality clinical research is needed to establish their efficacy, optimal dosing, and safety profiles in cancer treatment.

Diabetes and Cardiovascular Studies

Medicinal mushrooms have shown promising potential in managing diabetes, hyperglycemia, hyperlipidemia, and cardiovascular disorders through various clinical studies. Several mushroom species have demonstrated beneficial effects on blood glucose levels, lipid profiles, and cardiovascular health markers.

Ganoderma lucidum (Reishi) has been extensively studied for its anti-diabetic properties. A randomized, double-blind, placebo-controlled trial involving 71 type 2 diabetes patients found that Ganoderma lucidum polysaccharides significantly reduced fasting and postprandial glucose levels after 12 weeks of treatment. The study also reported improvements in insulin resistance and glycated hemoglobin (HbA1c) levels, indicating better long-term glucose control.

Cordyceps militaris has shown potential in managing hyperglycemia and hyperlipidemia. A clinical study involving 95 patients with type 2 diabetes found that Cordyceps militaris extract significantly lowered fasting blood glucose, postprandial glucose, and HbA1c levels compared to the placebo group. Additionally, the extract improved lipid profiles by reducing total cholesterol and triglyceride levels while increasing high-density lipoprotein (HDL) cholesterol.

Agaricus blazei Murill has demonstrated hypoglycemic and hypolipidemic effects in clinical trials. A study involving 72 type 2 diabetes patients showed that Agaricus blazei Murill extract significantly reduced fasting glucose, HbA1c, and insulin resistance after 12 weeks of supplementation. The extract also improved lipid profiles by decreasing total cholesterol and low-density lipoprotein (LDL) cholesterol levels.

Pleurotus ostreatus (Oyster mushroom) has shown promise in managing cardiovascular risk factors. A clinical trial involving 20 hypercholesterolemic individuals found that consuming Pleurotus ostreatus powder for 21 days significantly reduced total cholesterol, LDL cholesterol, and triglyceride levels. The study also reported improvements in blood pressure and antioxidant status.

Hericium erinaceus (Lion's Mane) has been investigated for its potential in managing diabetes-related complications. A small-scale clinical study involving 28 patients with mild cognitive impairment found that Hericium erinaceus extract improved cognitive function scores after 16 weeks of supplementation. This finding is particularly relevant for diabetic patients, who are at increased risk of cognitive decline.

The mechanisms behind these effects are multifaceted. Mushroom polysaccharides, particularly β-glucans, have been shown to modulate glucose metabolism by enhancing insulin sensitivity and promoting glucose uptake in peripheral tissues. Triterpenes found in some mushrooms, such as Ganoderma lucidum, exhibit anti-inflammatory and antioxidant properties that may contribute to improved cardiovascular health.

Furthermore, mushroom extracts have demonstrated potential in modulating gut microbiota composition, which plays a crucial role in glucose and lipid metabolism. For instance, Ganoderma lucidum polysaccharides have been shown to increase the abundance of beneficial gut bacteria, potentially contributing to improved metabolic health.

While these clinical studies show promising results, it's important to note that many have limitations such as small sample sizes or short durations. More large-scale, long-term clinical trials are needed to fully establish the efficacy and safety of medicinal mushrooms in managing diabetes, hyperglycemia, hyperlipidemia, and cardiovascular disorders.

Additionally, the optimal dosage and preparation methods for different mushroom species are yet to be standardized, which can affect the consistency and reliability of results across studies. Future research should focus on establishing standardized protocols for mushroom extract preparation and dosing to ensure reproducible clinical outcomes.

In conclusion, medicinal mushrooms show significant potential as complementary therapies in managing diabetes, hyperglycemia, hyperlipidemia, and cardiovascular disorders. However, patients should consult with healthcare providers before incorporating mushroom supplements into their treatment regimens, as more research is needed to fully understand their long-term effects and potential interactions with conventional medications.

Other Clinical Applications

Medicinal mushrooms have been studied for their potential benefits in various medical conditions beyond cancer, diabetes, and cardiovascular disorders. Clinical studies have explored their effects on several other health issues:

Respiratory Conditions:

A randomized, double-blind, placebo-controlled trial investigated the effects of Cordyceps sinensis on exercise performance in patients with moderate to severe chronic obstructive pulmonary disease (COPD). The study found that Cordyceps supplementation improved exercise endurance and oxygen uptake, suggesting potential benefits for respiratory function.

Cognitive Function and Neurological Disorders:

Lion's Mane mushroom (Hericium erinaceus) has shown promise in cognitive health. A small clinical trial involving 30 older adults with mild cognitive impairment found that oral administration of Lion's Mane extract for 16 weeks significantly improved cognitive function scores compared to the placebo group. This suggests potential applications in age-related cognitive decline and neurodegenerative disorders.

Immune System Support:

Several mushroom species have demonstrated immunomodulatory effects in clinical settings. A study on Agaricus blazei Murill extract showed enhanced natural killer cell activity and increased production of interferon-gamma and interleukin-12 in healthy volunteers, indicating potential immune-boosting properties.

Liver Health:

Ganoderma lucidum (Reishi) has been studied for its hepatoprotective effects. A clinical trial involving patients with hepatitis B found that Ganoderma extract improved liver function markers and reduced viral load when used as an adjunct to conventional antiviral therapy.

Allergies and Asthma:

Some mushroom extracts have shown potential in managing allergic conditions. A study on Ganoderma lucidum extract in patients with allergic rhinitis demonstrated reduced nasal symptoms and improved quality of life scores after 4 weeks of supplementation.

Gastrointestinal Disorders:

Hericium erinaceus (Lion's Mane) has been investigated for its effects on gastrointestinal health. A small clinical trial found that H. erinaceus extract improved symptoms in patients with mild ulcerative colitis, suggesting potential applications in inflammatory bowel diseases.

Fatigue and Stress:

Cordyceps militaris has been studied for its potential to alleviate fatigue and stress. A randomized, double-blind, placebo-controlled trial involving 79 participants reported that Cordyceps supplementation significantly reduced fatigue and improved exercise performance compared to placebo.

While these studies show promising results, it's important to note that many have limitations such as small sample sizes or short durations. More large-scale, long-term clinical trials are needed to fully establish the efficacy and safety of medicinal mushrooms in these various medical conditions.

Additionally, the mechanisms of action for many of these effects are still being elucidated. Proposed mechanisms include immunomodulation, antioxidant activity, and regulation of various signaling pathways. However, further research is required to fully understand these mechanisms and their implications for human health.

It's also crucial to consider that the efficacy of mushroom supplements can vary depending on factors such as the specific mushroom species, extraction methods, and dosage. Therefore, standardization of mushroom preparations and dosing protocols is essential for consistent and reliable clinical outcomes.

In conclusion, while medicinal mushrooms show potential in addressing various medical conditions, more robust clinical research is needed to solidify their place in modern medicine and to develop standardized, evidence-based therapeutic applications. Patients considering the use of medicinal mushrooms should consult with healthcare providers to make informed decisions based on their individual circumstances and the current state of scientific evidence.

Reishi (Ganoderma lucidum)

  1. Introduction

    Reishi mushroom, scientifically known as Ganoderma lucidum, has been a staple in traditional Eastern medicine for thousands of years. Revered for its potential health benefits, particularly in boosting the immune system and managing stress, this fungus has gained significant attention in the Western world in recent decades. This comprehensive analysis aims to explore the background, use cases, side effects, and safety considerations of Reishi as a supplement for immune support and stress management.

  2. Background

    1. Botanical Description

      Ganoderma lucidum is a polypore fungus belonging to the family Ganodermataceae. It grows in various hot and humid locations in Asia, particularly in China, Japan, and Korea. The mushroom has a distinctive appearance with its red-varnished, kidney-shaped cap and, depending on the age, white to dull brown pores underneath.

    2. Historical Use

      In traditional Chinese medicine, Reishi is known as "lingzhi," meaning "divine mushroom." It has been used for over 2,000 years to promote health and longevity. Ancient texts describe it as a "superior herb" that was believed to nourish the heart, preserve liver health, and strengthen the immune system.

    3. Active Compounds

      The therapeutic potential of Reishi is attributed to its bioactive compounds, which include:

      • Polysaccharides (particularly beta-glucans)

      • Triterpenes (ganoderic acids)

      • Peptidoglycans

      • Proteins

        These compounds are believed to be responsible for the mushroom's immunomodulatory, anti-inflammatory, and adaptogenic properties.

  3. Use Cases

    1. Immune System Support

      One of the primary uses of Reishi is as an immune booster. Research suggests that Reishi may enhance the function of various components of the immune system:

      1. White Blood Cells: Studies have shown that Reishi can affect the genes in white blood cells, potentially altering inflammation pathways and enhancing immune response.

      2. Natural Killer Cells: Some research indicates that Reishi may increase the activity of natural killer cells, which play a crucial role in fighting infections and cancer.

      3. T and B Lymphocytes: Reishi has been observed to potentially enhance the function of these important immune cells.

    2. Stress Support

      Reishi is classified as an adaptogen, a substance that may help the body adapt to stress. Its potential stress-relieving properties include:

      1. Cortisol Regulation: Some studies suggest that Reishi may help regulate cortisol levels, the primary stress hormone in the body.

      2. Anxiety and Depression: Limited research indicates that Reishi may have anxiolytic and antidepressant effects, potentially helping to alleviate symptoms of stress-related mental health issues.

      3. Sleep Improvement: Anecdotal evidence and some preliminary studies suggest that Reishi may help improve sleep quality, which is often disrupted by stress.

  4. Side Effects

    While Reishi is generally considered safe for most people when taken in appropriate doses, some potential side effects have been reported:

    1. Common Side Effects

      • Digestive issues (nausea, diarrhea, stomach upset)

      • Dry mouth, throat, and nasal passages

      • Skin rashes

      • Dizziness

      • Headache

    2. Rare but Serious Side Effects

      • Liver toxicity: There have been rare cases of liver damage associated with prolonged use of Reishi supplements.

      • Bleeding risk: Reishi may increase the risk of bleeding in some individuals, particularly those with bleeding disorders or taking blood-thinning medications.

  5. Safety Considerations

    1. Drug Interactions

      Reishi may interact with certain medications, including:

      • Anticoagulants and antiplatelets: May increase bleeding risk

      • Immunosuppressants: May counteract the effects of these drugs

      • Antihypertensive medications: May enhance blood pressure-lowering effects

    2. Contraindications

      Reishi should be used with caution or avoided in:

      • Pregnant or breastfeeding women (due to lack of safety data)

      • Individuals with bleeding disorders

      • People scheduled for surgery (due to potential bleeding risk)

      • Those with low blood pressure

    3. Dosage and Administration

      There is no standardized dosage for Reishi supplements. Doses used in studies have ranged from 1.5 to 9 grams of dried extract per day. It's crucial to follow the manufacturer's recommendations and consult with a healthcare professional before starting any new supplement regimen.

  6. Conclusion

Reishi (Ganoderma lucidum) shows promise as a supplement for immune support and stress management. Its long history of use in traditional medicine and growing body of scientific research suggest potential benefits. However, like all supplements, it should be used with caution and under the guidance of a healthcare professional. While generally safe for most people, Reishi can cause side effects and interact with certain medications. More research is needed to fully understand its efficacy and long-term safety profile. As with any supplement,

individuals should weigh the potential benefits against the risks and make informed decisions about its use in consultation with their healthcare provider.

Mycelia and Fruiting Bodies

  1. Introduction

    Fungi have been utilized for their medicinal properties for thousands of years, particularly in traditional Eastern medicine. In recent decades, scientific research has begun to elucidate the mechanisms behind their potential health benefits. This comprehensive analysis focuses on two key components of fungi: mycelia and fruiting bodies, with particular emphasis on their roles in immune support and stress management.

  2. Background

    1. Mycelia

      Mycelia are the vegetative part of fungi, consisting of a network of thread-like structures called hyphae. They grow underground or within a substrate, absorbing nutrients and breaking down organic matter. Mycelia serve as the foundation for fungal growth and development, playing a crucial role in the overall health and survival of the organism.

    2. Fruiting Bodies

      Fruiting bodies, commonly known as mushrooms, are the reproductive structures of fungi. They typically grow above ground and are responsible for producing and dispersing spores. Fruiting bodies are the most recognizable part of fungi and have been traditionally used in various cultures for their medicinal properties.

  3. Composition and Bioactive Compounds

    1. Mycelia

      Mycelia contain a variety of bioactive compounds, including:

      • Polysaccharides (e.g., beta-glucans)

      • Proteins and peptides

      • Enzymes

      • Secondary metabolites

        The thin cell walls of mycelia allow for easier absorption of nutrients and the production of extracellular compounds.

    2. Fruiting Bodies

      Fruiting bodies are rich in:

      • Beta-glucans

      • Triterpenes

      • Polyphenols

      • Ergosterol

      • Vitamins and minerals

        The concentration of these compounds can be higher in fruiting bodies compared to mycelia, particularly beta-glucans.

  4. Immune-Boosting Properties

    1. Mycelia

      Mycelia have shown potential in enhancing immune function through various mechanisms:

      • Stimulation of natural killer (NK) cell activity

      • Modulation of cytokine production

      • Enhancement of macrophage function

        Research on Reishi (Ganoderma lucidum) mycelia has demonstrated its ability to activate genes in white blood cells, potentially altering inflammation pathways and enhancing immune response.

    2. Fruiting Bodies

      Fruiting bodies, particularly those of medicinal mushrooms like Reishi, have been extensively studied for their immune-modulating effects:

      • Increase in the activity of T lymphocytes and NK cells

      • Enhancement of antibody production

      • Modulation of the complement system

        Studies have shown that polysaccharides from fruiting bodies can increase the expression of major histocompatibility complex (MHC) class I molecules, leading to improved antitumor immunity.

  5. Stress Support

    1. Mycelia

      Mycelia of certain fungi have demonstrated adaptogenic properties, helping the body cope with stress:

      • Regulation of the hypothalamic-pituitary-adrenal (HPA) axis

      • Modulation of neurotransmitter levels

      • Antioxidant effects to combat oxidative stress

        For example, cordyceps mycelia have shown potential in reducing fatigue and improving exercise performance, which may indirectly support stress management.

    2. Fruiting Bodies

      Fruiting bodies, particularly those of Reishi mushrooms, have been traditionally used for stress relief:

      • Potential anxiolytic and antidepressant effects

      • Improvement in sleep quality

      • Reduction in fatigue

        Research suggests that triterpenes found in Reishi fruiting bodies may help regulate cortisol levels, the primary stress hormone.

  6. Comparative Analysis: Mycelia vs. Fruiting Bodies

    1. Bioavailability and Absorption

      Mycelia generally have thinner cell walls, which may allow for easier digestion and absorption of bioactive compounds. However, fruiting bodies often contain higher concentrations of certain beneficial compounds, such as beta-glucans.

    2. Cultivation and Processing

      Mycelia can be grown more quickly and easily in controlled environments, often using a grain substrate. Fruiting bodies typically require more time and specific conditions to develop fully. This difference in cultivation methods can affect the final composition and quality of supplements.

    3. Traditional Use and Research Focus

      Historically, fruiting bodies have been the primary focus of traditional medicine and early scientific research. However, recent studies have begun to explore the potential benefits of mycelia, leading to a more balanced approach in supplement development.

  7. Safety and Side Effects

    1. Mycelia

      Generally, mycelia-based supplements are considered safe for most people when taken as directed. However, potential side effects may include:

      • Digestive discomfort

      • Allergic reactions (rare)

      • Interactions with certain medications

    2. Fruiting Bodies

      Fruiting body extracts, particularly from Reishi mushrooms, have been associated with some side effects, including:

      • Dizziness

      • Dry mouth

      • Nausea

      • Skin rashes

      • Potential liver toxicity with long-term use

        It's important to note that the safety profile can vary depending on the specific fungal species and extraction methods used.

  8. Dosage and Administration

    Optimal dosages for mycelia and fruiting body supplements can vary widely depending on the specific product and intended use. It's crucial to follow manufacturer recommendations and consult with a healthcare professional before starting any new supplement regimen.

  9. Conclusion

Both mycelia and fruiting bodies of fungi offer unique and potentially complementary benefits for immune support and stress management. While fruiting bodies have a longer history of traditional use and often contain higher concentrations of certain beneficial compounds, mycelia are gaining recognition for their bioactive properties and potential ease of absorption.

The choice between mycelia-based and fruiting body-based supplements may depend on specific health goals, individual responses, and product quality. As research in this field continues to evolve, a balanced approach that considers the potential benefits of both mycelia and fruiting bodies may provide the most comprehensive support for immune function and stress management.

Disclaimer

The information presented in this paper is based on publicly available data regarding ingredients and is intended for informational purposes only. It is not intended for marketing health claims or as a substitute for professional medical advice.

References

  1. Wachtel-Galor S, Yuen J, Buswell JA, et al. Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In: Benzie IFF, Wachtel-Galor S, eds. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. CRC Press/Taylor & Francis; 2011.

  2. Jin X, Ruiz Beguerie J, Sze DM, et al. Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev. 2016;4(4):CD007731.

  3. Bhardwaj N, Katyal P, Sharma AK. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov. 2014;8(2):104-117.

  4. Batra P, Sharma AK, Khajuria R. Probing Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes): a bitter mushroom with amazing health benefits. Int J Med Mushrooms. 2013;15(2):127-143.

  5. Cör D, Knez Ž, Knez Hrnčič M. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules. 2018;23(3):649.

  6. Sanodiya BS, Thakur GS, Baghel RK, et al. Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol. 2009;10(8):717-742.

  7. Xu Z, Chen X, Zhong Z, et al. Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am J Chin Med. 2011;39(1):15-27.

  8. Wicks SM, Tong R, Wang CZ, et al. Safety and tolerability of Ganoderma lucidum in healthy subjects: a double-blind randomized placebo-controlled trial. Am J Chin Med. 2007;35(3):407-414.

  9. Gao Y, Zhou S, Jiang W, et al. Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32(3):201-215.

  10. Zhao H, Zhang Q, Zhao L, et al. Spore Powder of Ganoderma lucidum Improves Cancer-Related Fatigue in Breast Cancer Patients Undergoing Endocrine Therapy: A Pilot Clinical Trial. Evid Based Complement Alternat Med. 2012;2012:809614.

  11. Tang W, Gao Y, Chen G, et al. A randomized, double-blind and placebo-controlled study of a Ganoderma lucidum polysaccharide extract in neurasthenia. J Med Food. 2005;8(1):53-58.

  12. Chu TT, Benzie IF, Lam CW, et al. Study of potential cardioprotective effects of Ganoderma lucidum (Lingzhi): results of a controlled human intervention trial. Br J Nutr. 2012;107(7):1017-1027.

  13. Klupp N, Chang D, Hawke F, et al. Ganoderma lucidum mushroom for the treatment of cardiovascular risk factors. Cochrane Database Syst Rev. 2015;2015(2):CD007259.

  14. Gao Y, Lan J, Dai X, et al. A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with type II diabetes mellitus. Int J Med Mushrooms. 2004;6(1):33-39.

  15. Noguchi M, Kakuma T, Tomiyasu K, et al. Effect of an extract of Ganoderma lucidum in men with lower urinary tract symptoms: a double-blind, placebo-controlled randomized and dose-ranging study. Asian J Androl. 2008;10(4):651-658.

  16. Oka S, Tanaka S, Yoshida S, et al. A water-soluble extract from culture medium of Ganoderma lucidum mycelia suppresses the development of colorectal adenomas. Hiroshima J Med Sci. 2010;59(1):1-6.

  17. Gao Y, Zhou S, Chen G, et al. A phase I/II study of a Ganoderma lucidum (Curt.: Fr.) P. Karst. extract (Ganopoly) in patients with advanced cancer. Int J Med Mushrooms. 2002;4(3):207-214.

  18. Zhao H, Zhang Q, Zhao L, et al. Spore Powder of Ganoderma lucidum Improves Cancer-Related Fatigue in Breast Cancer Patients Undergoing Endocrine Therapy: A Pilot Clinical Trial. Evid Based Complement Alternat Med. 2012;2012:809614.

  19. Noguchi M, Kakuma T, Tomiyasu K, et al. Randomized clinical trial of an ethanol extract of Ganoderma lucidum in men with lower urinary tract symptoms. Asian J Androl. 2008;10(5):777-785.

  20. Gao Y, Dai X, Chen G, et al. A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) polysaccharides (Ganopoly) in patients with advanced lung cancer. Int J Med Mushrooms. 2003;5(4):369-381.

  21. Wachtel-Galor S, Tomlinson B, Benzie IF. Ganoderma lucidum ("Lingzhi"), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr. 2004;91(2):263-269.

  22. Gao Y, Zhou S, Jiang W, et al. Effects of Ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32(3):201-215.

  23. Oka S, Tanaka S, Yoshida S, et al. A water-soluble extract from culture medium of Ganoderma lucidum mycelia suppresses the development of colorectal adenomas. Hiroshima J Med Sci. 2010;59(1):1-6.

  24. Gao Y, Lan J, Dai X, et al. A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with coronary heart disease. Int J Med Mushrooms. 2004;6(4):327-334.

  25. Chu TT, Benzie IF, Lam CW, et al. Study of potential cardioprotective effects of Ganoderma lucidum (Lingzhi): results of a controlled human intervention trial. Br J Nutr. 2012;107(7):1017-1027.

  26. Noguchi M, Kakuma T, Tomiyasu K, et al. Effect of an extract of Ganoderma lucidum in men with lower urinary tract symptoms: a double-blind, placebo-controlled randomized and dose-ranging study. Asian J Androl. 2008;10(4):651-658.

  27. Gao Y, Zhou S, Jiang W, et al. Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32(3):201-215.

  28. Tang W, Gao Y, Chen G, et al. A randomized, double-blind and placebo-controlled study of a Ganoderma lucidum polysaccharide extract in neurasthenia. J Med Food. 2005;8(1):53-58.

  29. Wicks SM, Tong R, Wang CZ, et al. Safety and tolerability of Ganoderma lucidum in healthy subjects: a double-blind randomized placebo-controlled trial. Am J Chin Med. 2007;35(3):407-414.

  30. Gao Y, Lan J, Dai X, et al. A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with type II diabetes mellitus. Int J Med Mushrooms. 2004;6(1):33-39.

  31. Zhao H, Zhang Q, Zhao L, et al. Spore Powder of Ganoderma lucidum Improves Cancer-Related Fatigue in Breast Cancer Patients Undergoing Endocrine Therapy: A Pilot Clinical Trial. Evid Based Complement Alternat Med. 2012;2012:809614.

  32. Noguchi M, Kakuma T, Tomiyasu K, et al. Randomized clinical trial of an ethanol extract of Ganoderma lucidum in men with lower urinary tract symptoms. Asian J Androl. 2008;10(5):777-785.

  33. Gao Y, Dai X, Chen G, et al. A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) polysaccharides (Ganopoly) in patients with advanced lung cancer. Int J Med Mushrooms. 2003;5(4):369-381.

  34. Wachtel-Galor S, Tomlinson B, Benzie IF. Ganoderma lucidum ("Lingzhi"), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr. 2004;91(2):263-269.

  35. Gao Y, Zhou S, Jiang W, et al. Effects of Ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32(3):201-215.

  36. Oka S, Tanaka S, Yoshida S, et al. A water-soluble extract from culture medium of Ganoderma lucidum mycelia suppresses the development of colorectal adenomas. Hiroshima J Med Sci. 2010;59(1):1-6.

  37. Gao Y, Lan J, Dai X, et al. A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with coronary heart disease. Int J Med Mushrooms. 2004;6(4):327-334.

  38. Chu TT, Benzie IF, Lam CW, et al. Study of potential cardioprotective effects of Ganoderma lucidum (Lingzhi): results of a controlled human intervention trial. Br J Nutr. 2012;107(7):1017-1027.

  39. Noguchi M, Kakuma T, Tomiyasu K, et al. Effect of an extract of Ganoderma lucidum in men with lower urinary tract symptoms: a double-blind, placebo-controlled randomized and dose-ranging study. Asian J Androl. 2008;10(4):651-658.

  40. Gao Y, Zhou S, Jiang W, et al. Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32(3):201-215.

  41. Tang W, Gao Y, Chen G, et al. A randomized, double-blind and placebo-controlled study of a Ganoderma lucidum polysaccharide extract in neurasthenia. J Med Food. 2005;8(1):53-58.

  42. Wicks SM, Tong R, Wang CZ, et al. Safety and tolerability of Ganoderma lucidum in healthy subjects: a double-blind randomized placebo-controlled trial. Am J Chin Med. 2007;35(3):407-414.

  43. Gao Y, Lan J, Dai X, et al. A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with type II diabetes mellitus. Int J Med Mushrooms. 2004;6(1):33-39.

  44. Zhao H, Zhang Q, Zhao L, et al. Spore Powder of Ganoderma lucidum Improves Cancer-Related Fatigue in Breast Cancer Patients Undergoing Endocrine Therapy: A Pilot Clinical Trial. Evid Based Complement Alternat Med. 2012;2012:809614.

  45. Noguchi M, Kakuma T, Tomiyasu K, et al. Randomized clinical trial of an ethanol extract of Ganoderma lucidum in men with lower urinary tract symptoms. Asian J Androl. 2008;10(5):777-785.

  46. Gao Y, Dai X, Chen G, et al. A randomized, placebo-controlled, multicenter study of Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) polysaccharides (Ganopoly) in patients with advanced lung cancer. Int J Med Mushrooms. 2003;5(4):369-381.

  47. Wachtel-Galor S, Tomlinson B, Benzie IF. Ganoderma lucidum ("Lingzhi"), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr. 2004;91(2):263-269.

  48. Gao Y, Zhou S, Jiang W, et al. Effects of Ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol Invest. 2003;32(3):201-215.

  49. Oka S, Tanaka S, Yoshida S, et al. A water-soluble extract from culture medium of Ganoderma lucidum mycelia suppresses the development of colorectal adenomas. Hiroshima J Med Sci. 2010;59(1):1-6.

  50. Gao Y, Lan J, Dai X, et al. A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with coronary heart disease. Int J Med Mushrooms. 2004;6(4):327-334.

  51. Chu TT, Benzie IF, Lam CW, et al. Study of potential cardioprotective effects of Ganoderma lucidum (Lingzhi): results of a controlled human intervention trial. Br J Nutr. 2012;107(7):1017-1027.

The information presented in this paper is based on publicly available data regarding ingredients and is intended for informational purposes only. It is not intended for marketing health claims or as a substitute for professional medical advice.